((本小题满分12分)
四棱柱ABCD—A1B1C1D1的底面ABCD是正方形,侧棱
底面ABCD,E、F分别是C1D1,C1B1的中点,G为CC1上任一点
,EC与底面ABCD所成角的正切值是4。
(Ⅰ)确定点G的位置,使平面CEF,并说明理由;
(Ⅱ)求二面角F—CE—C1的余弦值。
设
是等比数列,
,的各项和,其中
,
(Ⅰ)证明:函数
在
内有且仅有一个零点(记为
),且
;
(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为
,比较
与的大小,并加以证明.
已知椭圆
的半焦距为
,原点
到经过两点
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
两点,求椭圆
的方程.
设某校新、老校区之间开车单程所需时间为 , 只与道路畅通状况有关,对其容量为 的样本进行统计,结果如下:
(Ⅰ)求
的分布列与数学期望
;
(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
如图 ,在直角梯形
中,
,
,
,
,
是
的中点,
是
与
的交点.将
沿
折起到
的位置,如图
.
(Ⅰ)证明:
平面
;
(Ⅱ)若平面
平面
,求平面
与平面
夹角的余弦值.
的内角
所对的边分别为
.向量
与
平行.
(Ⅰ)求
;
(Ⅱ)若
求
的面积.