游客
题文

本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下

性别
是否达标


合计
达标

______
_____
不达标
_____

_____
合计
______
______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设Tn=Sn(n∈N*),求数列{Tn}的最大项的值与最小项的值.

在数列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an
(2)设Sn为{an}的前n项和,求Sn的最小值.

已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

已知等差数列{an}中,a5=12,a20=-18.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Sn.

已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn+n-4.
(1)求证{an}为等差数列;
(2)求{an}的通项公式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号