如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BFiDE丄平面ABCD,G为EF中点.
(1)求证:CF//平面
(2) 求证:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.
已知函数图象的一条对称轴为
.
(1)求的值;
(2)若存在使得
成立,求实数m的取值范围;
(3)已知函数在区间
上恰有50次取到最大值,求正数
的取值范围.
如图,已知正方形ABCD在直线MN的上方,边BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG,其中AE=2,记∠FEN=,△EFC的面积为
.
(1)求与
之间的函数关系;
(2)当角取何值时
最大?并求
的最大值.
已知圆:
与
轴相切,点
为圆心.
(1)求的值;
(2)求圆在
轴上截得的弦长;
(3)若点是直线
上的动点,过点
作直线
与圆
相切,
为切点.求四边形
面积的最小值。
已知角的终边过点
.
(1)求的值;
(2)若为第三象限角,且
,求
的值.