(本小题满分为12分)某种商品原来每件售价为25元,年销售8万件.
(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入
万元作为技改费用,投入50万元作为固定宣传费用,投入
万元作为浮动宣传费用.试问:当该商品明年的销售量
至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
已知数列中,
,前
项和
.
(1) 求数列的通项公式;
(2) 设数列的前
项和为
,是否存在实数
,使得
对一切正整数
都
成立?若存在,求出的最小值;若不存在,请说明理由.
如图,在直三棱柱中,平面
侧面
,且
(1) 求证:;
(2) 若直线与平面
所成的角为
,求锐二面角
的大小。
去年2月29日,我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.惠州市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.
(1) 求的值;
(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(注:设样本数据第组的频率为
,第
组区间的中点值为
,则样本数据的平均值为
.)
(3) 如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取
天的数值,其中达到“特优等级”的天数为
,求
的分布列和数学期望.
已知.
(1)求的值;
(2)求的值.
(本小题满分12分) 已知圆,点
,直线
.
(1) 求与圆相切,且与直线
垂直的直线方程;
(2) 在直线上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.