(本小题满分为12分)某种商品原来每件售价为25元,年销售8万件.
(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入
万元作为技改费用,投入50万元作为固定宣传费用,投入
万元作为浮动宣传费用.试问:当该商品明年的销售量
至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
(本小题只理科做,满分14分)如图,已知平面
,
,△
是正三角形,
,且
是
的中点.
(1)求证:平面
;
(2)求证:平面平面
;
(3)求平面与平面
所成锐二面角的大小.
(本小题文科14分理科13分).某公司今年初用25万元引进一种新的设备,设备投入运行后,每年销售收入为21万元。已知该公司第n年需要付出设备的维修和工人工资等费用的和的信息如下图。
(1)求;
(2)该公司引进这种设备后,第几年后开始获利、第几年后开始亏损?
(3)这种设备使用多少年,该公司的年平均获利最大?()
(本小题文科14分,理科12分)已知方程的曲线是圆C
(1)求的取值范围;
(2)当时,求圆C截直线
所得弦长;
(3)若圆C与直线相交于
两点,且以
为直径的圆过坐标原点O,求
的值.
(本小题满分12分)甲,乙两人约定上午7:00至8:00之间到某站乘公共汽车,在这段时间内有2班公共汽车,它们开车的时刻分别是7:30和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7时到8时的任何时刻到达车站是等可能的).
(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入(单位:千元)的数据如下表:
年份 |
2007 |
2008 |
2009 |
2010 |
2011 |
2012 |
2013 |
年份代号![]() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
人均纯收入![]() |
2.9 |
3.3 |
3.6 |
4.4 |
4.8 |
5.2 |
5.9 |
(Ⅰ)求关于
的线性回归方程;(已知b=0.5)
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.