设等比数列的前n项和为Sn,已知(1)求数列通项公式;(2)在与之间插入n个数,使这n+2个数组成一个公差为的等差数列。(Ⅰ)求证:(Ⅱ)在数列中是否存在三项(其中m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由
已知是椭圆的两个焦点,是椭圆上的第一象限内的点,且.(1)求的周长;(2)求点的坐标.
设p :指数函数在R上是减函数;q:。若p∨q是真命题,p∧q是假命题,求的取值范围。
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。 (1)求双曲线C的方程; (2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.
若函数,当x=2时,函数f(x)有极值. (1)求函数f(x)的解析式;(2)若函数f(x)=k有3个解,求实数k的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号