(本大题共12分)
已知
(1)求; (2)
.
设函数,其中
.
(1)若,求a的值;
(2)当时,讨论函数
在其定义域上的单调性.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是
元,月平均销售
件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
.记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
在数列中,
,
,
。
(Ⅰ)计算,
,
的值;
(Ⅱ)猜想数列的通项公式,并用数学归纳法加以证明
设函数,曲线
在点
处的切线方程为7x-4y-12=0,求
的解析式和
.
如图:是=
的导函数
的简图,它与
轴的交点是(1,0)和(3,0)
(1)求的极小值点和单调区间;
(2)求实数的值.