已知数列满足
(1)求数列的通项公式;
(2)设
为数列
的前n项积,是否存在实数a,使得不等式
对一切
都成立?若存在,求出的取值范围,若不存在,请说明理由。
如图,已知和
相交于
两点,
为
的直径,直线
交
于点
,点
为
的中点,连接
分别交
,
于点
,连接
。
(1)求证:;
(2)求证:。
(本小题满分12分)已知.
(1)已知函数h(x)=g(x)+ax3的一个极值点为1,求的取值;
(2) 求函数在
上的最小值;
(3)对一切,
恒成立,求实数a的取值范围.
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为
,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:
,是否存在实数m,使直线
与椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
(本小题满分12分)如图,已知⊥平面
,
,
,且
是
的中点,
.
(1)求证:平面
;
(2)求证:平面⊥平面
;
(3)求此多面体的体积.
某中学为了解学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:
已知该项目评分标准为:
(Ⅰ)求上述20名女生得分的中位数和众数;
(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率;