如图,已知平面
,
∥
,
是正三角形,
且.
(1)设是线段
的中点,求证:
∥平面
;
(2)求直线与平面
所成角的余弦值.
设抛物线的焦点为
,经过点
的动直线
交抛物线
于点
,
且
.
(1)求抛物线的方程;
(2)若(
为坐标原点),且点
在抛物线
上,求直线
倾斜角;
(3)若点是抛物线
的准线上的一点,直线
的斜率分别为
.求证:
当为定值时,
也为定值.
某医药研究所开发一种新药,在实验药效时发现:如果成人按规定剂量服用,那么服药后每毫升血液中的含药量(微克)与时间
(小时)之间满足
,
其对应曲线(如图所示)过点.
(1)试求药量峰值(的最大值)与达峰时间(
取最大值时对应的
值);
(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效,那么成人按规定剂量服用该药一次后能维持多长的有效时间?(精确到0.01小时)
已知复数(
为虚数单位)
(1)若,且
,求
与
的值;
(2)设复数在复平面上对应的向量分别为
,若
,且
,求
的最小正周期和单调递减区间.
已知正四棱柱的底面边长为2,
.
(1)求该四棱柱的侧面积与体积;
(2)若为线段
的中点,求
与平面
所成角的大小.
已知函数,
(其中
,
),且函数
的图象在点
处的切线与函数
的图象在点
处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足
,求实数m的取值范围;