从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)
(1)甲、乙两人必须跑中间两棒;
(2)若甲、乙两人只有一人被选且不能跑中间两棒;
(3)若甲、乙两人都被选且必须跑相邻两棒.
已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减;
(1)求a的值;
(2)求证:x=1是该函数的一条对称轴;(3)是否存在实数b,使函数
的图象与函数f(x)的图象恰好有两个交点?若存在,求出b的值;若不存在,请说明理由.
函数的定义域为R,并满足以下条件:①对任意
,有
;
②对任意、
,有
;③
则
(1)求的值;
(2)求证:在R上是单调增函数;
(3)若,求证:
已知函数在
处取得的极小值是
.
(1)求的单调递增区间;
(2)若时,有
恒成立,求实数
的取值范围.
设是定义在
上的函数,若存在
,使得
在
上单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间为含峰区间. 对任意的
上的单峰函数
,下面研究缩短其含峰区间长度的方法.
(1)证明:对任意的,
,若
,则
为含峰区间;若
,则
为含峰区间;
(2)对给定的,证明:存在
,满足
,使得由(1)所确定的含峰区间的长度不大于
;
已知函数:
(Ⅰ)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立.
(Ⅱ)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];
(Ⅲ)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .