(本小题满分14分)、
已知函数.
(Ⅰ)求证:存在定点,使得函数
图象上任意一点
关于
点对称的点
也在函数
的图象上,并求出点
的坐标;
(Ⅱ)定义,其中
且
,求
;
(Ⅲ)对于(Ⅱ)中的,求证:对于任意
都有
.
(有难度哦)给定有限单调递增数列且
,定义集合
且
.若对任意点
,存在点
使得
(
为坐标原点),则称数列
具有性质
.
(Ⅰ)判断数列:
和数列
:
是否具有性质
,简述理由.
(Ⅱ)若数列具有性质
,求证:
①数列中一定存在两项
使得
;
②若,
且
,则
.
已知数列{an}的前n项和Sn满足Sn+1=kSn+2(n∈N*),且a1=2,a2=1.
(1)求k的值和Sn的表达式;
(2)是否存在正整数m,n,使得<
成立?若存在,求出这样的正整数;若不存在,请说明理由.
设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有+
+…+
<
.
设数列{an}满足a1+3a2+32a3+…+3n-1an=,n∈N*.
(1)求数列{an}的通项;
(2)设bn=,求数列{bn}的前n项和Sn.
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足=an
.
(1)求Sn的表达式;
(2)设bn=,求{bn}的前n项和Tn.