(本小题满分l2分)
已知函数 .
(Ⅰ)求函数的最小正周期及单调递增区间;
(Ⅱ)内角
的对边长分别为
,若
求
的值.
将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:
(1)求两点数之和为5的概率;
(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标
的点
在圆
的内部的概率.
在平面直角坐标系中,已知圆
的圆心为
,过点
且斜率为
的直线与圆
相交于不同的两点
.
(1)求的取值范围;
(2)当时,求直线
方程.
(3)在y轴上是否存在一点C,使是定值,若存在求C坐标并求此时
的值,若不存在说明理由.
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程;
某高中有高级教师96人,中级教师144人,初级教师48人,为了进一步推进高中课程改革,邀请甲、乙、丙、丁四位专家到校指导。学校计划从所有教师中采用分层抽样办法选取6名教师分别与专家一对一交流,选出的6名教师再由专家随机抽取教师进行教学调研。
(1)求应从高级教师、中级教师、初级教师中分别抽取几人;
(2)若甲专家选取了两名教师,这两名教师分别是高级教师和中级教师的概率;
(3)若每位专家只抽一名教师,每位教师只与其中一位专家交流,求高级教师恰有一人被抽到的概率。
有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.
用右侧茎叶图表示这两组数据:
(1)A、B二人预赛成绩的中位数分别是多少?
(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合 适?请说明理由;
(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.