某中学的高二(1)班男同学有名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(Ⅲ)试验结束后,第一次做试验的同学得到的试验数据为,第二次做试验的同学得到的试验数据为
,请问哪位同学的实验更稳定?并说明理由.
在四棱锥中,
底面
,
,
,
,
,
是
的中点.
(1)证明:;
(2)证明:平面
;
(3)(限理科生做,文科生不做)求二面角的余弦值.
已知命题,命题
,若
是
的充分不必要条件,求实数
的取值范围.
已知函数,
.
(1)求的值;
(2)设求
的值.
某省2015年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从我校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5 cm之间,将测量结果按如下方式分成6组:第一组 [157.5,162.5),第二组[162.5,167.5),…,第6 组[182.5,187.5],下图是按上面分组方法得到的频率分布直方图.
(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)求这50名男生身高在177.5cm以上(含177.5 cm)的人数;
(3)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(以高到低)在全省前130名的人数记为,求
的数学期望.
参考数据:若~
,则
,
,
某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高三年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语成绩不优秀的有140人,外语成绩优秀但语文成绩不优秀的有100人.
(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩和外语成绩有关系?
(2)将上述调查所得到的频率视为概率,从该校高三年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望.
![]() |
0.010 |
0.005 |
0.001 |
![]() |
6.635 |
7.789 |
10.828 |