某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高三年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语成绩不优秀的有140人,外语成绩优秀但语文成绩不优秀的有100人.
(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩和外语成绩有关系?
(2)将上述调查所得到的频率视为概率,从该校高三年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望.
![]() |
0.010 |
0.005 |
0.001 |
![]() |
6.635 |
7.789 |
10.828 |
解的不等式
选修4—5:不等式选讲
(Ⅰ)若与2的大小,并说明理由;
(Ⅱ)设是
和1中最大的一个,当
选修4-4:极坐标与参数方程选讲
已知曲线的极坐标方程为
,直线
的参数方程是:
.
(Ⅰ)求曲线的直角坐标方程,直线
的普通方程;
(Ⅱ)将曲线横坐标缩短为原来的
,再向左平移1个单位,得到曲线曲线
,求曲线
上的点到直线
距离的最小值.
选修4-1:几何证明选讲
如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧的中点,连结AG分别交⊙O、BD于点E、F,连结CE.
(Ⅰ)求证:为⊙O的直径。
(Ⅱ)求证:;
已知函数。
(Ⅰ)讨论函数的单调区间;
(Ⅱ)若在
恒成立,求
的取值范围。