(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M;
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设A、B是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.
金融机构对本市内随机抽取的20家微小企业的产业结构调整及生产经营情况进行评估,根据得分将企业评定为优秀、良好、合格、不合格四个等级,金融机构将根据等级对企业提供相应额度的资金支持。
(1)在答题卡上作出频率分布直方图,并由此估计该市微小企业所获资金支持的均值;
(2)金融机构鼓励得分前2名的两家企业A、B随机收购得分后2名的两家企业a、b中的一家,求A、B企业选择收购同一家企业的概率。
如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C:找到一个点E,从E点可以观察到点B、C。并测得以下数据:CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B两 点之间的距离。
已知函数f(x)=|x+1|+|x﹣2|﹣m
(I)当时,求f(x) >0的解集;
(II)若关于的不等式f(x) ≥2的解集是
,求
的取值范围
已知直线C1:,(t为参数),圆C2:
(θ为参数).
(I)当α=时,求C1与C2的交点的直角坐标;
(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
如图,直线经过⊙
上的点
,并且
⊙
交直线
于
,
,连接
.
(I)求证:直线是⊙
的切线;
(II)若⊙
的半径为
,求
的长.