如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了并流入杯中,会溢出杯子吗?请用你的计算数据说明理由。(冰、水的体积差异忽略不计)
已知集合,对于数列
中
.
(Ⅰ)若三项数列满足
,则这样的数列
有多少个?
(Ⅱ)若各项非零数列和新数列
满足首项
,
(
),且末项
,记数列
的前
项和为
,求
的最大值.
已知椭圆:
(
)过点
,且椭圆
的离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.证明:直线
恒过定点,并求出该定点的坐标.
已知函数(
为自然对数的底数).
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若存在使不等式
成立,求实数
的取值范围.
如图,已知平面
,四边形
是矩形,
,
,点
,
分别是
,
的中点.
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:平面
;
(Ⅲ)若点为线段
中点,求证:
∥平面
.