以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经 X 表示. (Ⅰ)如果 X = 8 ,求乙组同学植树棵数的平均数和方差; (Ⅱ)如果 X = 9 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差 s 2 = 1 n [ ( x 1 - x ) 2 + ( x 2 - x ) 2 + . . . + ( x n - x ) 2 ] ,其中 x 为 x 1 , x 2 , . . . x n 的平均数)
已知函数在x = 1处取得极值,其中a,b,c为常数。 (Ⅰ)试确定a,b的值; (II) 若对任意x>0,不等式恒成立,求c的取值范围。
四棱锥中,底面为矩形,平面底面,,,,点是侧棱的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的大小. (Ⅲ)在线段求一点,使点到平面的距离为.
等差数列的各项均为正数,,前n项和为是等比数列,且 (Ⅰ)求列数和的通项公式; (Ⅱ)求的值.
已知函数. (Ⅰ)求函数的周期和最大值; (Ⅱ)已知,求的值.
(本小题满分10分) 已知
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号