(本小题满分12分)电视台举办猜奖活动,参与者需先后回答两道选择题:问题A有四个选项,问题B有六个选项,但都只有一个选项是正确的。问题A回答正确可得奖金m元,问题B回答正确可得奖金n元。
活动规定:①参与者可任意选择答题顺序;②如果第一个问题回答错误则该参与者猜奖活动中止。
一个参与者在回答问题前,对这两个问题都很陌生,因而准备靠随机猜测回答问题,试确定回答问题的顺序,使获奖金额的期望值较大。
如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)
(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
设命题,若
同时为假命题,求x的取值集合.
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐V标方程为,M,N分别为曲线C与x轴、y轴的交点.
(1)写出曲线C的直角坐标方程,并求M,N的极坐标;
(2)求直线OM的极坐标方程.
设函数2|x-3|+|x-4|.
(1)求不等式的解集;
(2)若不等式的解集不是空集,求实数a的取值范围.
已知的导函数
的简图,它与
轴的交点是(0,0)和(1,0),
又
(1)求的解析式及
的极大值.
(2)若在区间(m>0)上恒有
≤x成立,求m的取值范围.