已知圆:
,点
是直线
:
上的一动点,过点
作圆M的切线
、
,切点为
、
.
(Ⅰ)当切线PA的长度为时,求点
的坐标;
(Ⅱ)若的外接圆为圆
,试问:当
运动时,圆
是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(Ⅲ)求线段长度的最小值.
某小区想利用一矩形空地建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中
,
,且
中,
,经测量得到
.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点
作一条直线交
于
,从而得到五边形
的市民健身广场.
(Ⅰ)假设,试将五边形
的面积
表示为
的函数,并注明函数的定义域;
(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.
设,函数
.
(Ⅰ)已知是
的导函数,且
为奇函数,求
的值;
(Ⅱ)若函数在
处取得极小值,求函数
的单调递增区间。
在△ABC中,内角A,B,C的对边分别为a,b,c,若.
(Ⅰ)求的值;
(Ⅱ)若,且
,求
的值.
在平面直角坐标系中,直线
与圆
相交于两点
, 则线段
的长度为.