(本小题满分12分)
已知椭圆经过点
,一个焦点是
.
(I)求椭圆的方程;
(II)设椭圆与
轴的两个交点为
、
,不在
轴上的动点
在直线
上运动,直线
、
分别与椭圆
交于点
、
,证明:直线
经过焦点
.
直线在两坐标轴上的截距之和为2,则实数
的值是.
已知函数在
时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得
在该区间上的值域为
?若存在,求出
的值;若不存在,说明理由.
设等比数列的首项为
公比为
为正整数),且满足
是
与
的等差中项;数列
满足
(1)求数列
的通项公式;(2)试确定
的值,使得数列
为等差数列.
如图,在平面直角坐标系中,
分别是椭圆
的左、右焦点,顶点
的坐标为
,连结
并延长交椭圆于点A,过点A作
轴的垂线交椭圆于另一点C,连结
.
(1)若点C的坐标为,且
,求椭圆的方程;
(2)若求椭圆离心率e的值.
如图是一个半圆形湖面景点的平面示意图.已知为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.