如图,在四边形中,
,
,
,
,
,求四边形
绕
旋转一周所成几何体的表面积及体积.
设曲线在点
处的切线斜率为
,且
.对一切实数
,不等式
恒成立(
≠0).
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:>
.
已知函数(e为自然对数的底数).
(1)求函数的单调增区间;
(2)设关于x的不等式≥
的解集为M,且集合
,求实数t的取值范围.
已知是
内任意一点,连结
并延长交对边于
,
,
,则
.这是平面几何的一个命题,其证明常常采用“面积法”:
.
运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明.
在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某市一个投保人能活到75岁的概率为0.60,试问:
(1)若有3个投保人, 求能活到75岁的投保人数的分布列;
(2)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)
在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。求:
(1)取两次就结束的概率;
(2)正好取到2个白球的概率.