游客
题文

(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.

请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有       人,在扇形图中,表示“其他球类”的扇形的圆心角为       度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有       人.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在平行四边形 ABCD中, ADAB

(1)作∠ BAD的平分线交 BC于点 E,在 AD边上截取 AFAB,连接 EF(要求:尺规作图,保留作图痕迹,不写作法);

(2)判断四边形 ABEF的形状,并说明理由.

甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形 ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点 A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点 A按顺时针连跳4个边长,跳到点 E,再从点 E顺时针连跳7个边长,跳到点 F

分别求出芳芳、明明跳回起点 A的概率,并指出游戏规则是否公平.

如图,在平面直角坐标系中,抛物线的顶点为 A(1,﹣4),且与 x轴交于 BC两点,点 B的坐标为(3,0).

(1)写出 C点的坐标,并求出抛物线的解析式;

(2)观察图象直接写出函数值为正数时,自变量的取值范围.

已知二次函数 yax 2﹣2 ax+ ca<0)的最大值为4,且抛物线过点( 7 2 ,﹣ 9 4 ,点 Pt,0)是 x轴上的动点,抛物线与 y轴交点为 C,顶点为 D

(1)求该二次函数的解析式,及顶点 D的坐标;

(2)求| PCPD|的最大值及对应的点 P的坐标;

(3)设 Q(0,2 t)是 y轴上的动点,若线段 PQ与函数 ya| x| 2﹣2 a| x|+ c的图象只有一个公共点,求 t的取值.

如图,已知 AD是△ ABC的外角∠ EAC的平分线,交 BC的延长线于点 D,延长 DA交△ ABC的外接圆于点 F,连接 FBFC

(1)求证:∠ FBC=∠ FCB

(2)已知 FAFD=12,若 AB是△ ABC外接圆的直径, FA=2,求 CD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号