(本小题满分12分)有这样一则公益广告:“人们在享受汽车带来的便捷与舒适的同时,却不得不呼吸汽车排放的尾气”,汽车已是城市中碳排放量比较大的行业之一.某市为响应国家节能减排,更好地保护环境,决定将于
年起取消
排放量超过
的
型新车挂牌.检测单位对目前该市保有量最大的甲类
型品牌车随机抽取
辆进行了
排放量检测,
记录如下(单位:
).
(Ⅰ)已知,求
的值及样本标准差;
(Ⅱ)从被检测的甲类品牌车中任取2辆,则至少有一辆不符合排放量的概率是多少?
某人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,全部放完。
(I)求编号为奇数的小球放入到编号为奇数的盒子中的概率值;
(II)当一个小球放到其中一个盒子时, 若球的编号与盒子的编号相同 ,称这球是“放对”的,否则称这球是“放错”的。设“放对”的球的个数为的分布列及数学期望。
已知是数列
的前n项和,
满足关系式
,
(n≥2,n为正整数).
(1)令,证明:数列
是等差数列;
(2)求数列的通项公式;
(3)对于数列,若存在常数M>0,对任意的
,恒有
≤M成立,称数列
为“差绝对和有界数列”,
证明:数列为“差绝对和有界数列”.
设m为实数,函数,
.
(1)若≥4,求m的取值范围;
(2)当m>0时,求证在
上是单调递增函数;
(3)若对于一切
,不等式
≥1恒成立,求实数m的取值范围.
某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。
(1)求从数学兴趣小组、英语兴趣小组各抽取的人数;
(2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率;
(3)记表示抽取的3名学生中男学生数,求
的分布列及数学期望。
如图,过椭圆的左焦点
作x轴的垂线交椭圆于点P,点A和点B分别为椭圆的右顶点和上顶点,OP∥AB.
(1)求椭圆的离心率e(2)过右焦点
作一条弦QR,使QR⊥AB.若△
的面积为
,求椭圆的方程.