如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形, P A ⊥ 平面 A B C D , A P = A B , B P = B C = 2 , E , F 分别是 P B , P C 的中点. (Ⅰ)证明: E F / / 平面 P A D ; (Ⅱ)求三棱锥 E - A B C 的体积 V .
已知椭圆上的点到其两焦点距离之和为,且过点. (Ⅰ)求椭圆方程; (Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,,若,求△的面积.
已知,函数. (Ⅰ)当时,求的最小值; (Ⅱ)若在区间上是单调函数,求的取值范围.
如图,在三棱柱中,平面,,, ,分别是,的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面平面; (Ⅲ)求直线与平面所成角的正弦值.
已知是一个公差大于0的等差数列,且满足, . (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足:,求数列的前项和.
已知函数. (Ⅰ)求的值; (Ⅱ)求在区间上的最大值和最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号