(本小题满分12分)
已知向量,求
(1);
(2)若的最小值是
,求实数
的值.
(本题15分) 已知函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)若函数的图像在点
处的切线的倾斜角为
,问:m在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
(Ⅲ)当时,设函数
,若在区间
上至少存在一个
,使得
成立,试求实数p的取值范围.
(本题15分)如图,S(1,1)是抛物线为上的一点,弦SC,SD分别交
轴于A,B两点,且SA=SB。
(I)求证:直线CD的斜率为定值;
(Ⅱ)延长DC交轴于点E,若
,求
的值。
(本题14分)如图,在三棱锥SABC中,
,O为BC的中点.
(I)求证:面ABC;
(II)求异面直线与AB所成角的余弦值;
(III)在线段AB上是否存在一点E,使二面角的平面角的余弦值为
;若存在,求
的值;若不存在,试说明理由。
(本题14分)为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行一定数量的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中27名境外游客,其余是境内游客.在境外游客中有持金卡,在境内游客中有
持银卡..
(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡,至多1人持银卡的概率;
(Ⅱ)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量,求
的分布列及数学期望
.
(本题14分)A、B是直线图像的两个相邻交点,且
(I)求的值;
(II)在锐角中,a,b,c分别是角A,B,C的对边,若
的面积为
,求a的值.