游客
题文

知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)
(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:北方一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.

科目 数学   题型 解答题   难度 中等
知识点: 应用类问题
登录免费查看答案和解析
相关试题

国家规定“中小学生每天在校体育活动时间不低于 1 h ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:

A 组: t < 0 . 5 h

B 组: 0 . 5 h t < 1 h

C 组: 1 h t < 1 . 5 h

D 组: t 1 . 5 h

请根据上述信息解答下列问题:

(1)本次调查的人数是   人;

(2)请根据题中的信息补全频数分布直方图;

(3) D 组对应扇形的圆心角为    °

(4)本次调查数据的中位数落在   组内;

(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.

如图,在 ΔABC 中, B = 40 ° C = 50 °

(1)通过观察尺规作图的痕迹,可以发现直线 DF 是线段 AB   ,射线 AE DAC   

(2)在(1)所作的图中,求 DAE 的度数.

解不等式组 x - 3 ( x - 2 ) 4 2 x - 1 3 x + 1 2

先化简,再求值: 2 x 2 - 1 ÷ 1 x + 1 - 1 x - 1 ,从1,2,3这三个数中选择一个你认为适合的 x 代入求值.

如图,直线 y = 1 2 x + 1 x y 轴分别交于点 B A ,顶点为 P 的抛物线 y = a x 2 - 2 ax + c 过点 A

(1)求出点 A B 的坐标及 c 的值;

(2)若函数 y = a x 2 - 2 ax + c 3 x 4 时有最大值为 a + 2 ,求 a 的值;

(3)连接 AP ,过点 A AP 的垂线交 x 轴于点 M .设 ΔBMP 的面积为 S

①直接写出 S 关于 a 的函数关系式及 a 的取值范围;

②结合 S a 的函数图象,直接写出 S > 1 8 a 的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号