知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)
(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:北方一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.
国家规定“中小学生每天在校体育活动时间不低于 ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
组:
组:
组:
组:
请根据上述信息解答下列问题:
(1)本次调查的人数是 人;
(2)请根据题中的信息补全频数分布直方图;
(3) 组对应扇形的圆心角为 ;
(4)本次调查数据的中位数落在 组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
如图,在 中, , .
(1)通过观察尺规作图的痕迹,可以发现直线 是线段 的 ,射线 是 的 ;
(2)在(1)所作的图中,求 的度数.
解不等式组 .
先化简,再求值: ,从1,2,3这三个数中选择一个你认为适合的 代入求值.
如图,直线 与 , 轴分别交于点 , ,顶点为 的抛物线 过点 .
(1)求出点 , 的坐标及 的值;
(2)若函数 在 时有最大值为 ,求 的值;
(3)连接 ,过点 作 的垂线交 轴于点 .设 的面积为 .
①直接写出 关于 的函数关系式及 的取值范围;
②结合 与 的函数图象,直接写出 时 的取值范围.