(本小题满分12分)
已知数列中,
(1)求数列的通项公式;
(2)设,若对任意的正整数
,当
时,不等
恒成立,求实数
的取值范围.
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线
与椭圆C交于不同两点
.
(1)求椭圆C的方程;
(2)设直线斜率为1,求线段
的长;
(3)设线段的垂直平分线交
轴于点P(0,y0),求
的取值范围.
2015年某市某区高考文科数学成绩抽样统计如下表:
(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)
(2)若2015年某市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;
(3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
已知椭圆:
,直线
交椭圆
于
两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.
在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
已知命题:“若
则二次方程
没有实根”.
(1)写出命题的否命题;
(2)判断命题的否命题的真假, 并证明你的结论.