某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售。这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第天的总销量
(千克)与
的关系为
;乙级干果从开始销售至销售的第
天的总销量
(千克)与
的关系为
,且乙级干果的前三天的销售量的情况见下表:
(1)求、
的值;
(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润=销售总金额-进货总金额。这批干果进货至卖完的过程中的损耗忽略不计)
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
已知函数f(x)=x3-x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)当a>0时,求函数f(x)的极值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又f′=.
(1)求f(x)的解析式;
(2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围
已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
已知圆M的方程为:x2+y2-2x-2y-6=0,以坐标原点为圆心的圆N与圆M相切.
(1)求圆N的方程;
(2)圆N与x轴交于E、F两点,圆内的动点D使得|DE|、|DO|、|DF|成等比数列,求·的取值范围;
(3)过点M作两条直线分别与圆N相交于A、B两点,且直线MA和直线MB的倾斜角互补,试判断直线MN和AB是否平行?请说明理由