游客
题文

在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白球”的频率折线统计图:

(1)请估计:当很大时,摸到白球的频率将会接近       (精确到0.01);
(2)假如你摸一次,你摸到黑球的概率P(黑球)=         
(3)试估算盒子里白、黑两种颜色的球各有多少个?
(4)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?

科目 数学   题型 解答题   难度 中等
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为: A .唐诗; B .宋词; C .论语; D .三字经.比赛形式分“单人组”和“双人组”.

(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?

(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.

解不等式组: 2 x 4 0 3 x 2 < x ,并把解集在数轴上表示出来.

某校300名学生参加植树活动,要求每人植树 2 5 棵,活动结束后随机抽查了20名学生每人的植树量,并分为四类: A 类2棵、 B 类3棵、 C 类4棵、 D 类5棵,将各类的人数绘制成不完整的条形统计图(如图所示),回答下列问题:

(1) D 类学生有多少人?

(2)估计这300名学生共植树多少棵?

如图,方格图中每个小正方形的边长为1,点 A B C 都是格点.

(1)画出 ΔABC 关于直线 BM 对称的△ A 1 B 1 C 1

(2)写出 A A 1 的长度.

如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE

(1)求证: ΔCDE 是等边三角形;

(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;

(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D E B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号