游客
题文

如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B
重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形
相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,
我们就把点E叫做四边形ABCD的AB边上的强相似点.

(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;
(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)
②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,在矩形 AOBC 中,已知 B 4 , 0 , A 0 , 3 , F 是边 BC 上的一个动点(不与点 B , C 重合),过 F 点的反比例函数 y = kx ( k > 0 ) 的图象与 AC 边交于点 E .

(1)求证: AOE BOF 的面积相等;

(2)记 S = S OEF - S ECF ,求当 k 为何值时, S 有最大值,最大值为多少?

如图,在平面直角坐标系中。已知四边形 A B C D 为菱形,且 A 0 , 3 , B - 4 . 0 .

(1)求过点 C 的反比例函数解析式;

(2)设直线 l 与(1)中所求函数图象相切,且与 x 轴, y 轴的交点分别为 M , N . O 为坐标原点.求证: OMN 的面积为定值.

如图, AOB 中, ABO = 90 ,边 OB x 轴上,反比例函数 y = k x ( x > 0 ) 的图象经过斜边 OA 的中点 M ,与 AB 相交于点N, S AOB = 12 , AN = 9 2 .

(1)求 k 的值;

(2)求直线 MN 的解析式.

如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A AB y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E .

(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;

(2)连接 OE , BE , AE ,记 OBE , ADE 的面积分别为 S 1 , S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.

如图,正比例函数 y = x 的图象与反比例函数 y = k x ( x > 0 ) 的图象交于点 A 1 , a .在 ABC 中, ACB = 90 , CA = CB ,点 C 坐标为 - 2 , 0 .

(1)求 k 的值;

(2)求 AB 所在直线的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号