如图,在平面直角坐标系xOy中,抛物线与x轴交于A(1,0)、B(5,0)两点.
(1). 求抛物线的解析式和顶点C的坐标;
(2). 设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为(0°<
<90°)
①当等于多少度时,△CPQ是等腰三角形?
②设,求s与t之间的函数关系式.
如图,在Rt△ABC中∠ABC=90°,BA=BC,P在△ABC的内部,且∠APB=135°,PA:PC=1:3,求PA:PB
设二次函数的图象为C1.二次函数
的图象与C1关于y轴对称.
(1)求二次函数的解析式;
(2)当≤0时,直接写出
的取值范围;
(3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数
( k,m为常数,k≠0)的图象经过A,B两点,当
时,直接写出x的取值范围.
已知二次函数.
(1)若点与
在此二次函数的图象上,则
(填 “>”、“=”或“<”);
(2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.
(1)求证:DE为⊙O的切线;
(2)若DE=3,AC=8,求直径AB的长.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为r米,面积为S平方米.(注:的近似值取3)
(1)求出S与r的函数关系式,并写出自变量的取值范围;
(2)当半径r为何值时,扇形花坛的面积最大,并求面积的最大值.