游客
题文

(理)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。
(Ⅰ)、试问此次参赛学生总数约为多少人?
(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表


0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857

 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设函数
(Ⅰ)求不等式的解集
(Ⅱ)求函数的最小值

已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,
(Ⅱ)对于n≥6,已知,求证,m=1,1,2…,n;
(Ⅲ)求出满足等式的所有正整数n.

已知a为给定的正实数,m为实数,函数
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.

过四面体的底面上任一点O分别作分别是所作直线与侧面交点。
求证:为定值,并求出此定值。

已知函数
(1)当时,求函数的单调区间;
(2)当时,不等式恒成立,求实数的取值范围.
(3)求证:(其中, e是自然对数的底数).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号