游客
题文

 (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

科目 数学   题型 解答题   难度 较易
知识点: 表面展开图
登录免费查看答案和解析
相关试题

(本小题满分14分)已知函数,其中.(1) 讨论函数的单调性,并求出的极值;(2) 若对于任意,都存在,使得,求实数的取值范围.

(本小题满分13分)已知函数(其中为常数)的图像经过点A、B是函数图像上的点,正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,是一系列正三角形,记它们的边长是,求数列的通项公式;
(3) 在(2)的条件下,数列满足,记的前项和为,证明:

(本小题满分12分)南昌市在加大城市化进程中,环境污染问题也日益突出。据环保局测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比.现已知相距18的A,B两家工厂(视作污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两家工厂对该处的污染指数之和.设).
(1) 试将表示为的函数;
(2) 若,且时,取得最小值,试求的值.

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

(本小题满分12分)已知命题p:函数内有且仅有一个零点.命题q:在区间内恒成立.若命题“p且q”是假命题,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号