在平面直角坐标系中,已知圆
的圆心在第二象限,半径为
且与直线
相切于原点
.椭圆
与圆
的一个交点到椭圆两焦点的距离之和为
.
(1)求圆的方程;
(2)圆上是否存在点
,使
、
关于直线
为圆心,
为椭圆右焦点)对称,若存在,请求出点
的坐标;若不存在,请说明理由.
(本小题满分13分)已知数列,
满足条件:
,
.
(Ⅰ)求证数列是等比数列,并求数列
的通项公式;
(Ⅱ)求数列的前
项和
,并求使得
对任意
都成立的正整数
的最小值.
(本小题满分12分)如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的小矩形绿化区,这三块绿化区四周和绿化区之间均设有1米宽的走道,已知三块绿化区的总面积为200平方米,求该矩形区域ABCD占地面积的最小值.
(本小题满分12分)已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若将的图象向右平移
个单位,得到函数
的图象,求函数
在区间[0,π]上的最大值和最小值.
(本小题满分12分)
在中,角A,B,C所对的边分别为a,b,c, 若向量
,
,
且.
(Ⅰ)求角A的大小;
(Ⅱ)若的面积
,求
的值.
(本小题满分12分)已知命题:不等式
对一切
恒成立;命题
:函数
是增函数.若
或
为真,
且
为假,求实数
的取值范围.