医学上为了研究传染病在传播的过程中病毒细胞的生长规律及其预防措施,将个病毒细胞注入到一只小白鼠的体内进行试验.在试验过程中,得到病毒细胞的数量与时间的关系记录如下表:
时间(小时) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
病毒细胞总数(个) |
![]() |
2![]() |
4![]() |
8![]() |
16![]() |
32![]() |
64![]() |
已知该种病毒细胞在小白鼠体内超过个时,小白鼠将死亡,但有一种药物对杀死此种病毒有一定效果,用药后,即可杀死其体内的大部分病毒细胞.
(1)在16小时内,写出病毒细胞的总数与时间
的函数关系式;
(2)为了使小白鼠在实验过程中不死亡,最迟应在何时注射该种药物.(精确到整数,)
已知函数若方程
有且只有两个相异实根0,2,且
(Ⅰ)求函数的解析式;
(Ⅱ)已知各项均不为1的数列满足
求通项
;
(Ⅲ)如果数列满足
求证:当
时恒有
成立.
在平面直角坐标系中,O为坐标原点,已知点M(1,-3),N(5,1),若点C满足(
,点C的轨迹与抛物线
交于A、B两点.
(Ⅰ)求证:;
(Ⅱ)在轴正半轴上是否存在一定点P(m,0),使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.
已知是实数,函数
满足函数
在定义域上是偶函数,函数
在区间
上是减函数,且在区间(-2,0)上是增函数.
(Ⅰ)求的值;
(Ⅱ)如果在区间上存在函数
满足
,当x为何值时,
得最小值.
如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(Ⅰ)试判断直线PB与平面EAC的关系;
(Ⅱ)求证:AE⊥平面PCD;
(Ⅲ)若AD=AB,试求二面角A-PC-D的正切值.
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.
(Ⅰ)求家具城恰好返还该顾客现金200元的概率;
(Ⅱ)设该顾客有ξ张奖券中奖,求ξ的分布列,并求ξ的数学期望E.