(1)已知的解集为
,求不等式
的解集.
(2)为何值时,
的两根一个根大于2,一个根小于2
已知曲线C:的横坐标分别为1和
,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且
).设区间
,当
时,曲线C上存在点
使得xn的值与直线AAn的斜率之半相等.
(1)证明:是等比数列;
(2)当对一切
恒成立时,求t的取值范围;
(3)记数列{an}的前n项和为Sn,当时,试比较Sn与n + 7的大小,并证明你的结论.
已知函数时,
的值域为
,当
时,的值域为
,依次类推,一般地,当
时,
的值域为
,其中k、m为常数,且
(1)若k=1,求数列的通项公式;
(2)项m=2,问是否存在常数,使得数列
满足
若存在,求k的值;若不存在,请说明理由;
(3)若,设数列
的前n项和分别为Sn,Tn,求
。
已知函数,其中a为常数,且
(1)若是奇函数,求a的取值集合A;
(2)当a=-1时,设的反函数为
,且函数
的图像与
的图像关于
对称,求
的取值集合B。
(3)对于问题(1)(2)中的A、B,当时,不等式
恒成立,求x的取值范围。
已知在区间
上是增函数
(I)求实数的取值范围;
(II)记实数的取值范围为集合A,且设关于
的方程
的两个非零实根为
。
①求的最大值;
②试问:是否存在实数m,使得不等式对
及
恒成立?若存在,求m的取值范围;若不存在,请说明理由.
已知函数
(1) 若函数是单调递增函数,求实数
的取值范围;
(2)当时,两曲线
有公共点P,设曲线
在P处的切线分别为
,若切线
与
轴围成一个等腰三角形,求P点坐标和
的值;
(3)当时,讨论关于
的方程
的根的个数