(本小题满分12分)
已知数列{an}的前n项和Sn=2n2-2n,数列{bn}的前n项和Tn=3-bn.
①求数列{an}和{bn}的通项公式;
②设cn=an·bn,求数列{cn}的前n项和Rn的表达式.
直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.
(Ⅰ)求证:直线AB是⊙O的切线;
(2)若tan∠CED=,⊙O的半径为3,求OA的长.
给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
(ⅰ)当点为“准圆”与
轴正半轴的交点时,求直线
的方程并证明
;
(ⅱ)求证:线段的长为定值.
已知函数
(1)若,求函数
在
处的切线方程;
(2)当时,求证:
某公司销售、
、
三款手机,每款手机都有经济型和豪华型两种型号,据统计
月份共销售
部手机(具体销售情况见下表)
A款手机 |
B款手机 |
C款手机 |
|
经济型 |
200 |
x |
y |
豪华型 |
150 |
160 |
z |
已知在销售部手机中,经济型
款手机销售的频率是
.
(1)现用分层抽样的方法在、
、
三款手机中抽取
部,求在
款手机中抽取多少部?
(2)若,求
款手机中经济型比豪华型多的概率.
如图,四棱锥中,
是正三角形,四边形
是矩形,且平面
平面
,
,
.
(1)若点是
的中点,求证:
平面
(2)若是线段
的中点,求三棱锥
的体积.