(本小题满分13分)
设数列{an}满足a1=t,a2=t2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n∈N*).
(1)证明数列{an}为等比数列,并求{an}的通项公式;
(2)当<t<2时,比较2n+2-n与tn+t-n的大小;
(3)若<t<2,bn=,求证:++…+<2n-.
在△ABC中,角A,B,C的对边分别为,且
.
(Ⅰ)求sin2A;(Ⅱ)若=4,且
,求
.
已知抛物线,圆
,过点
作直线
,自上而下依次与上述两曲线交于点
(如图所示),
.
(Ⅰ)求;
(Ⅱ)作关于
轴的对称点
,求证:
三点共线;
(Ⅲ)作关于
轴的对称点
,求
到直线
的距离的最大值.
在数列中,
,当
时,满足
.
(Ⅰ)求证:数列是等差数列,并求数列
的通项公式;
(Ⅱ)令,数列
的前
项和为
,求使得
对所有
都成立的实数
的取值范围.
如图,四棱锥中,面
面
,侧面
是等腰直角三角形,
,且
∥
,
,
.
(Ⅰ)求证:;
(Ⅱ)求直线与面
的所成角的正弦值.
已知不等式组的解集是
,且存在
,使得不等式
成立.
(Ⅰ)求集合;
(Ⅱ)求实数的取值范围.