(本小题满分14分)
设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为
y=1.
(1)确定b,c的值;
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).
证明:当x1≠x2时,f ′(x1)≠f ′(x2);
(3)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.
(本小题满分14分)
建造一容积为8深为2m的长方体形无盖水池,每
池底和池壁造价各为120元和80元.
(1)求总造价关于一边长x的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在和
上的单调性;
(3)如何设计水池尺寸,才能使总造价最低;
(本小题满分14分)
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明 PA//平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
(本小题满分14分)
如图所示,在棱长为2的正方体中,
、
分别为
、
的
中点.
(1)求证:;
(2)求三棱锥的体积.
(本小题满分12分)
已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示.
(1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据;
(2)求该四棱锥的侧面积.
(本小题满分12分)
(1)
(2)