(本小题满分12分)
一个四棱锥的底面是边长为
的正方形,且
。
(1)求证:平面
;
(2)若为四棱锥中最长的侧棱,点
为
的中点.求直线SE.与平面SAC所成角的正弦值。
(本小题满分12分)
为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列
的前六项.
(I)求等比数列的通项公式;
(II)求等差数列的通项公式;
(III)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
(本小题满分12分)
已知函数(Ⅰ)求证:对于
的定义域内的任意两个实数
,都有
;(Ⅱ)判断
的奇偶性,并予以证明.
(本小题满分12分)
已知集合A={x|x2-3x+2=0},B={x|x2-mx+2=0},且AB=B,求实数m的取值范围。
(本小题满分10分)
已知直线l经过点P(1,1),倾斜角.
(Ⅰ)写出直线l的参数方程
(Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之积.