已知数列的前n项和为
,且
,(n=1,2,3…)数列
中,
,点
在直线
上。
(Ⅰ)求数列和
的通项公式;
(Ⅱ)记,求满足
的最大正整数n。
(本小题满分14分)
在正三棱柱中,点
是
的中点,
.
(1)求证:∥平面
;
(2)试在棱上找一点
,使
.
(本小题满分14分)
设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
已知等比数列中,各项都是正数,且
成等差数列,则
等于.
已知数列{an}的首项a1=a,Sn是数列{an}的前n项和,且满足:=3n2an+
,an≠0,n≥2,n∈N*.
(1)若数列{an}是等差数列,求a的值;
(2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.
(本题满分16分)
设函数.
(1)若=1时,函数
取最小值,求实数
的值;
(2)若函数在定义域上是单调函数,求实数
的取值范围;
(3)若,证明对任意正整数
,不等式
都成立.