如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,
BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点
(1)证明:直线EE1∥平面FCC1
(2)求:二面角B-FC1-C的余弦值.
已知抛物线 过点 .过点 作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
为了研究一种新药的疗效,选100名患者随机分成两组,每组各 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 和 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标 的值小于 的概率;
(2)从图中A,B,C,D四人中随机选出两人,记 为选出的两人中指标x的值大于1.7的人数,求 的分布列和数学期望 ;
(3)试判断这100名患者中服药者指标 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
如图,在四棱锥 中,底面 为正方形,平面 平面 ,点M在线段PB上, 平面 , , .
(1)求证:M为PB的中点;
(2)求二面角 的大小;
(3)求直线MC与平面BDP所成角的正弦值.
在 中, , .
(1)求 的值;
(2)若 ,求 的面积.
给定无穷数列 ,若无穷数列{b n}满足:对任意 ,都有 ,则称 "接近"。
(1)设 是首项为1,公比为 的等比数列, , ,判断数列 是否与 接近,并说明理由;
(2)设数列 的前四项为: =1, =2, =4, =8, 是一个与 接近的数列,记集合M={x|x=b i, i=1,2,3,4},求M中元素的个数m;
(3)已知 是公差为d的等差数列,若存在数列{b n}满足:{b n}与 接近,且在b₂-b₁,b₃-b₂,…b 201-b 200中至少有100个为正数,求d的取值范围。