已知定义在R上的函数,
为常数,且
是函数
的一个极值点.
(Ⅰ)求的值;
(Ⅱ)若函数,
,求
的单调区间;
(Ⅲ) 过点可作曲线
的三条切线,求
的
取值范围
已知函数(
,
)在一个周期上的一系列对应值如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求的解析式;
(Ⅱ)在△中,
,
为锐角,且
,求△
的面积.
已知=(
,
),
=(
,
),(ω>0),
且
的最小正周期是
.
(Ⅰ)求的值;
(Ⅱ)若=
(
),求
值;
(Ⅲ)若函数与
的图象关于直线
对称,且方程
在区间
上有解,求
的取值范围.
扇形AOB中心角为60°,所在圆半径为,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;
(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=;
试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
甲、乙二人参加知识竞赛活动,组委会给他们准备了难、中、易三种题型,其中容易题两道,分值各10分,中档题一道,分值20分,难题一道,分值40分,二人需从4道题中随机抽取一道题作答(所选题目可以相同)
(Ⅰ)求甲、乙所选题目分值不同的概率;
(Ⅱ)求甲所选题目分值大于乙所选题目分值的概率.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
x:y |
1:1 |
2:1 |
3:4 |
4:5 |