如图,在等腰梯形OABC中,
.直线
(t>0)由点O向点C移动,至点C完毕,记扫描梯形时所得直线
左侧的图形面积为
.试求
的解析式,并画出
的图像.
我国西南地区正遭受着百年不遇的旱灾.据气象预报,未来48小时受灾最严重的甲地有望迎来一次弱降雨过程.某军区命令M
部队立即前往甲地准备实施人工增雨作业,已知“人工增雨”高炮车Ⅰ号载有3枚“增雨炮弹”和1枚“增雨火箭”,通过炮击“积雨云”实施增雨,第一次击中积雨云只能使云层中的水分子凝聚,第二次击中同一积雨云才能成功增雨.如果需要第4次射击才使用“增雨火箭”,当增雨成功或者增雨弹用完才停止射击.每次射击相互独立,且用“增雨炮弹
”击中积雨云的概率是
,用“增雨火箭”击中积雨云的概率是
.


(Ⅰ)
求不使用“增雨火箭”就能成功增雨的概率;
(Ⅱ)求要使用“增雨火箭”才能成功增雨的概率;
(Ⅲ)求射击次数不小于3的概率.
如图,在四棱锥
中,
,
,且DB平分
,E为PC的中点,
,

(Ⅰ)证明
;

(Ⅱ)证明
;
(Ⅲ)求直线BC与平面PBD所成的角的正切值
等差数列{an }中,
=30,
=15,求使an≤0的最小自然数n.
△ABC中,角A,B,C对边的边长分别是a,b,c,且a(cosB+cosC)=b+c.
(1)求证:A=;
(2)若△ABC外接圆半径为1,求△ABC周长的取值范围.
设椭圆
:
的左、右焦点分别为
、
,上顶点为
,在
轴负半轴上有一点
,满足
,且
⊥
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若过
、
、
三点的圆恰好与直线
相切,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
、
两点,
若点
使得以
为邻边的平行四边形是菱形,求
的取值范围.