(本小题满分14分)已知函数对于任意
都有
且当
时,有
。
(1) 判断的奇偶性与单调性,并证明你的结论;
(2) 设不等式对于一切
恒成立,求整数
的最小值。
定义:设分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线到直线
的距离;
(2)已知曲线到直线
的距离为
,求实数
的值;
(3)求圆到曲线
的距离.
设正四棱锥的侧面积为
,若
.
(1)求四棱锥的体积;
(2)求直线与平面
所成角的大小.
已知函数.
(1)求的单调区间;
(2)当时,判断
和
的大小,并说明理由;
(3)求证:当时,关于
的方程:
在区间
上总有两个不同的解.
已知椭圆的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
设,若
,
,
.
(1)若,求
的取值范围;
(2)判断方程在
内实根的个数.