已知,函数
.
(Ⅰ)当时,求
的单调区间;
(Ⅱ)若,试证明:“方程
有唯一解”的充要条件是“
”。
某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(月
日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:
统计信息 汽车行驶路线 |
不堵车的情况下到达城市乙所需 时间(天) |
堵车的情况下到达城市乙所需时间(天) |
堵车的概率 |
运费(万元) |
公路1 |
2 |
3 |
![]() |
![]() |
公路2 |
1 |
4 |
![]() |
![]() |
(注:毛利润销售商支付给果园的费用
运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求
的分布列和数学期望
;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?
(本小题满分10分)在如图所示的多面体中,四边形为正方形,四边形
是直角梯形,
,
平面
,
.
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的大小.
【改编】已知函数.
(1)当时,求
的值域;
(2)设三内角
所对边分别为
且
,求
在
上的值域.
(本小题满分7分)选修4—5:不等式选讲
已知函数,
,且
的解集为
.
(Ⅰ)求的值;
(Ⅱ)若,且
,求
的最小值.
(本小题满分7分)《选修4-4:坐标系与参数方程》
在极坐标系中,圆的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)若圆上的动点
的直角坐标为
,求
的最大值,并写出
取得最大值时点P的直角坐标.