已知是常数),且
(
为坐标原点).
(1)求关于
的函数关系式
;
(2)若时,
的最大值为4,求
的值;
(3)在满足(2)的条件下,说明的图象可由
的图象如何变化而得到?
(本小题满分13分)
如图,过抛物线(
>0)的顶点作两条互相垂直的弦OA、OB。
⑴设OA的斜率为k,试用k表示点A、B的坐标;
⑵求弦AB中点M的轨迹方程。
(本小题满分12分)
(本小题满分12分)
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.
(本小题满分12分)已知函数
(Ⅰ)求函数的最小正周期。
(Ⅱ)求函数的最大值及
取最大值时x的集合。
设函数,其中
,
。
(1)若,求曲线
在
点处的切线方程;
(2)是否存在负数,使
对一切正数
都成立?若存在,求出
的取值范围;若不存在,请说明理由。