已知分别是双曲线
的左、右焦点,过
斜率为
的直线
交双曲线的左、右两支分别于
两点,过
且与
垂直的直线
交双曲线的左、右两支分别于
两点。
(1)求的取值范围;
求四边形面积的最小值。
(本小题满分12分)
直线L1:与直线L2:
的交点为
(1) 求经过点和原点的直线方程;
(2)求经过点与直线
垂直的直线方程。
设函数的定义域为全体R,当x<0时,
,且对任意的实数x,y∈R,有
成立,数列
满足
,且
(n∈N*)
(Ⅰ)求证:是R上的减函数;
(Ⅱ)求数列的通项公式;
(Ⅲ)若不等式对一切n∈N*均成立,求k的最大值.
如图,直角梯形ABCD,∠,AD∥BC,AB=2,AD=
,BC=
椭圆F以A、B为焦点且过点D,
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点E满足
,是否存在斜率
两点,且
,若存在,求K的取值范围;若不存在,说明理由。
在三棱锥中,△ABC是边长为4的正三角形,平面
,
,M、N分别为AB、SB的中点。
(1)证明:;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离。
关于实数的不等式
的解集依次为
与
,求使
的
的取值范围。