已知是边长为
的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D-AC-B;
(Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E-OF-A的余弦值;
(Ⅲ)求点D到面EOF的距离.
(本小题满分7分)选修4-2:矩阵与变换
已知线性变换把点
变成了点
,把点
变成了点
.
(1)求变换所对应的矩阵
;
(2)求直线在变换
的作用下所得到的直线方程.
(本小题满分14分)已知函数(
).
(1)当时,求函数
的图象在点
处的切线方程;
(2)设,求证:当
时,
;
(3)若函数恰有两个零点
,
(
),求实数
的取值范围.
(本小题满分13分)如图,在四棱锥中,侧棱
底面
,
,
,
,
,
是棱
中点.
(1)求证:平面
;
(2)设点是线段
上一动点,且
,当直线
与平面
所成的角最大时,求
的值.
(本小题满分13分)我国东部某风景区内住着一个少数民族部落,该部落拟投资万元用于修复和加强民俗文化基础设施.据测算,修复好部落民俗文化基础设施后,任何一个月(每月均按
天计算)中第
天的游客人数
近似满足
(单位:千人),第
天游客人均消费金额
近似满足
(单位:元).
(1)求该部落第天的日旅游收入
(单位:千元,
,
)的表达式;
(2)若以一个月中最低日旅游收入金额的%作为每一天应回收的投资成本,试问该部落至少经过几年就可以收回全部投资成本.
本小题满分13分)已知椭圆(
)的右焦点与抛物线
的焦点重合,且椭圆
的离心率
.
(1)求椭圆的标准方程;
(2)若直线(
)与椭圆
交于不同的两点
,
,以线段
为直径作圆
.若圆
与
轴相切,求直线
被圆
所截得的弦长.