(本小题满分9分)如图,圆锥中,
为底面圆的两条直径,
,且
⊥
,
,
为
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求圆锥的表面积;
(Ⅲ)求异面直线与
所成角的正切值.
某高校在202年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85), 第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(ⅱ)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求
的分布列和数学期望.
已知等差数列的公差大于0,且
是方程
的两根,数列
的前n项的和为
,且
.
(1)求数列,
的通项公式;
(2)记,求证:
.
如图,在四棱锥中,
底面
,且底面
为正方形,
分别为
的中点.
(1)求证:平面
;
(2)求平面和平面
的夹角.
设函数.
(1)求函数的最小正周期和单调递增区间;
(2)当时,
的最大值为2,求
的值,并求出
的对称轴方程.
已知椭圆的对称轴为坐标轴,焦点是
,又点
在椭圆
上.
(1)求椭圆的方程;
(2)已知直线的斜率为
,若直线
与椭圆
交于
、
两点,求
面积的最大值.