某高校在202年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85), 第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(ⅱ)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求
的分布列和数学期望.
已知函数(
是不为零的实数,
为自然对数的底数).
(1)若曲线与
有公共点,且在它们的某一公共点处有共同的切线,求
的值;
(2)若函数在区间
内单调递减,求此时
的取值范围.
如图,已知圆,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(Ⅰ)求椭圆的方程;
(Ⅱ)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
C如图,将边长为2的正方形ABCD沿对角线BD 折成一个直二面角,且EA⊥平面ABD,AE=,
(Ⅰ)若,求证:AB∥平面CDE;
(Ⅱ)求实数的值,使得二面角A-EC-D的大小为60°.
已知是定义在区间
上的奇函数,且
,若
,
时,有
.
(1)判断的单调性,并证明;
(2)若对所有
,
恒成立,求实数t的取值范围.
已知向量,
,
.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)在中,
分别是角
的对边,
,
,
若,求
的大小.